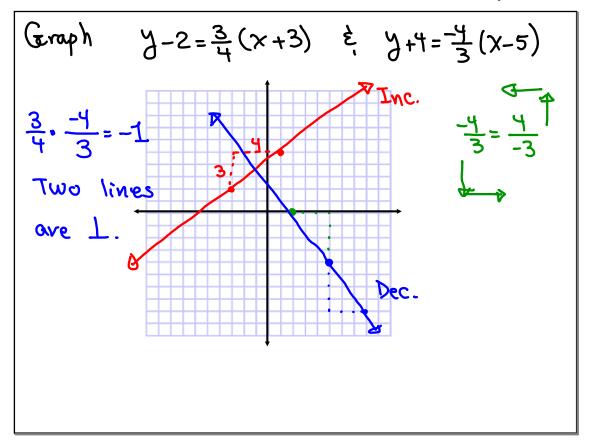
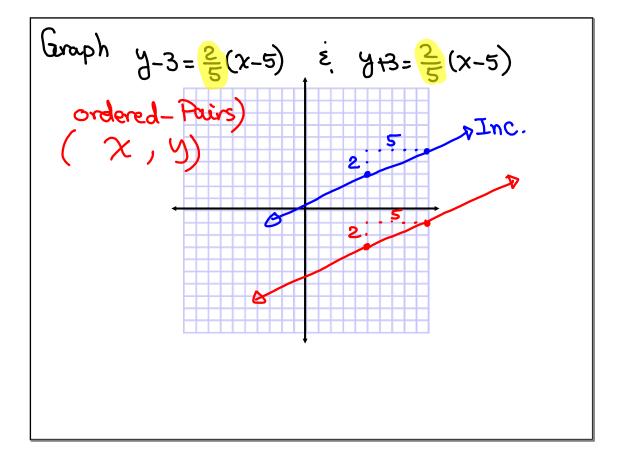
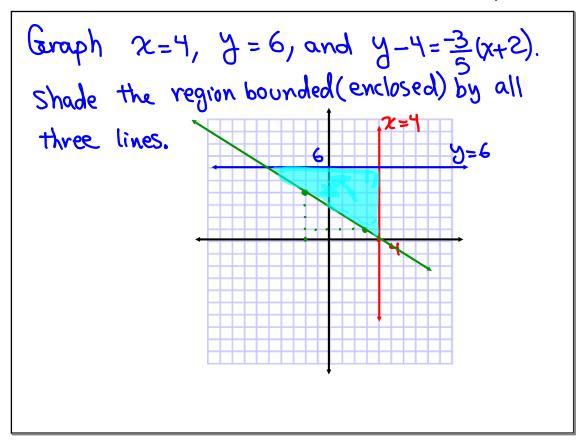
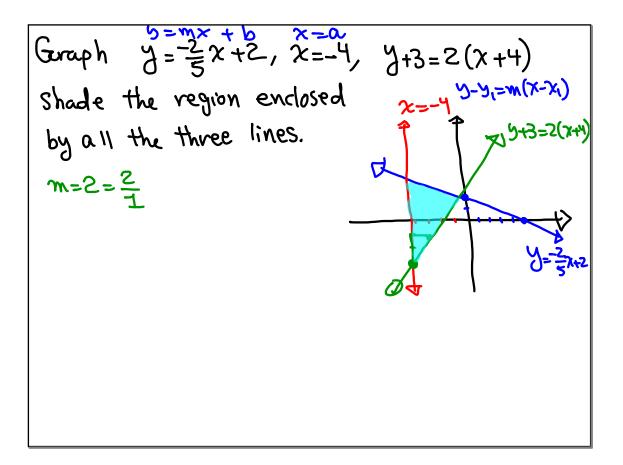


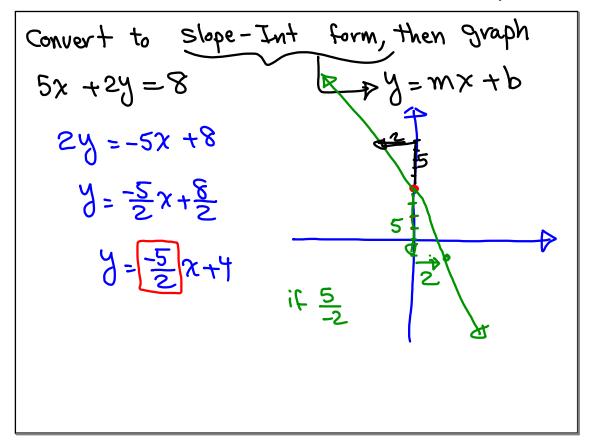
$$\begin{array}{l} \mathcal{R}(-2,1) \quad \mathcal{B}(4,-1) \\ \text{istance} \\ d = \sqrt{(-2,-4)^2 + (1,-1)^2} = \sqrt{(-6)^2 + (8)^2 = \sqrt{100}} \\ \text{and} \quad \text{midpoint} \\ m\left(\frac{-2}{2}, +\frac{4}{2}, \frac{7}{2}, +\frac{-1}{2}\right) = M(1,3) \\ \text{istand} \quad \text{Slope} \\ m_2 = \frac{7}{-2} - \frac{7}{4} = \frac{7+1}{-6} = \frac{8}{-6} = \frac{-4}{-3} \end{array}$$


Point - Slope formula

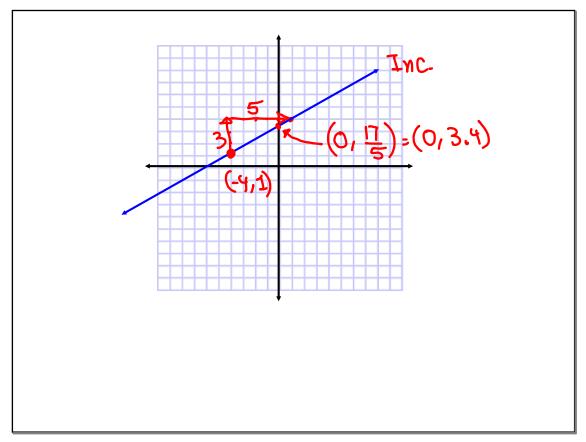

$$J - J_1 = m(x - x_1)$$
 Point (x_1, y_1)
Slope m
 $J - 3 = \frac{2}{5}(x - 4)$
Point $(4,3)$
 $m = \frac{2}{5}\frac{Rise}{Run}$




(Exaph p Point-Slope form 1 A Increasing


$$9+5 = \frac{5}{2}(x+2)$$

Point (-2,-5)
 $m = \frac{5}{2}Rise$
 $m = \frac{5}{2}Rise$
 $m = 0$ H.L.
 $m > 0$ Increasing
No Slope
Unde fined Slope V.L.
 $m < 0$ Decreasing



Write
$$y-1 = \frac{3}{5}(x+4)$$
 in Slope-Int form,
then graph.
 $y-1 = \frac{3}{5}x+\frac{3}{5}\cdot 4$
 $y = \frac{3}{5}x+\frac{12}{5}+\frac{12}{5}$
 $y = \frac{3}{5}x+\frac{12}{5}+1$
 $y = \frac{3}{5}x+\frac{12}{5}+1$

How to find equation of a line that
contains the point
$$(x_1, y_1)$$
 with slope m.
Given: $(x_1, y_1) \in m$.
1) Use Point-slope formula
 $J - Y_1 = m(x - x_1)$
2) Simplify, write final Answer
in slope-Int. form $J = mx + b$
Sind equ of a line that contains $(3,5)$ with
slope 2. $Y - Y_1 = m(x - x_1)$ $Y - 5 = 2x - 6$
 $Y - 5 = 2(x - 3)$ $Y = 2x - 1$

find eqn of a line that contains (4,-2) with slope $-\frac{3}{4}$ Given: $(4, -2), m = \frac{3}{4}$ $3 - \frac{3}{4} = m(x - \frac{x}{4})$ y-2 = 2/2 (x − 4) y====x+3-2 y +2 = -3; (x =4) $y_{+2} = -\frac{3}{4} \chi - \frac{3}{4} (-\frac{1}{4})$ $y = \frac{-3}{4}x + 1$ R

find eqn of a line that contains (0,-5) with Slope 3. $\mathcal{Y} - \mathcal{Y} = \mathcal{W}(\mathcal{X} - \mathcal{Y})$ Given: (0,5), m= $y_{-}=\frac{3}{5}=\frac{3}{5}(x-0)$ y+2 = = 3× J-3-7 -5 3

Sind eqn of a line with
$$slope -\frac{3}{2}$$
 and
it contains $(5, -2)$.
we have $slope \notin one Point$
we use $y - y_1 = m(x - x_1)$ $p = 2y = -3x + 15 - 4$
 $y_1(0, \frac{11}{2})$ $y - 2 = -\frac{3}{2}(x - 5)$ $2y = -3x + 11$
 $y_1 + 2 = -\frac{3}{2}x + \frac{15}{2}$ $y = -3x + 12$
 $y = -\frac{3}{2}x + \frac{15}{2}$
 $y = -3x + 12$
 $y = -\frac{3}{2}x + \frac{11}{2}$
 $y = -3x + 15$ $\frac{11}{2} = 5.5$

How to find eqn of aline that contains
(X19Y1) and (X2, Y2):
1) find Slope
$$m = \frac{Y_1 - Y_2}{X_1 - X_2}$$
 $m = \frac{Y_2 - Y_1}{X_2 - X_1}$
2) use one of the point, and slope
then use $Y - Y_1 = m(X - X_1)$
3) Simplify, final ANS in Slope-Int
form.

Sind eqn of a line that contains
(3,5) and (0,1)

$$m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{5 - 1}{3 - 0} = \frac{4}{3}$$

 $3 - y_1 = m(x - x_1)$
 $y - 1 = \frac{4}{3}(x - 0)$
 $3 - 1 = \frac{4}{3}x$

Find eqn of a line that contains

$$(4,0) + (0,-2)$$

$$m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{y_1 - (-2)}{4 - 0} = \frac{2}{4} = \frac{1}{2}$$

$$y - y_1 = m(x - x_1) \quad \text{Point-Slope}$$

$$y - -2 = \frac{1}{2}(x - 0)$$

$$y + 2 = \frac{1}{2}x = \frac{y_1 - \frac{1}{2}x - 2}{4 - \frac{1}{2}x - 2}$$

Find eqn of a line that contains

$$(2, -7)$$
 and $(2, 5)$
 $m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{-7 - 5}{2 - 2} = \frac{-12}{0}$ undefined
No slope
V.L.
 $\chi = 2$

Find eqn of a line that contains

$$(3-) \stackrel{:}{i} (0, -1)$$

$$m = \frac{y_1 - y_2}{z_1 - z_2} = \frac{-1 - (-1)}{3 - 0} = \frac{-1 + 1}{3} = 0 = 0$$

$$H.L. \quad (-1) \stackrel{-1 + 1}{3} = 0 = 0$$

$$H.L. \quad (-1) \stackrel{-1 + 1}{3} = 0 = 0$$

$$Y = -1$$

$$Y = -1$$

Project 1: In Your Packet Look Sor Points & Lines Presentation "3 Pases" matters. "50 Problems" You Juse the graphing Pase are responsible available on my website cover pase one Side only. omv Due next Thursday.